
Exercise: Grouping, Summarizing, and Plotting

Overview

This exercises addresses reading and writing data, aggregating data, managing files, and
creating plots with multiple layers and different data sets. This exercises is designed to be
completed in 75 minutes or fewer. Although you should have time to complete the parts, if
you are unable, as with all exercises, you are encouraged to complete it outside of class time
so that you are able to incorporate your experiences and knowledge into future exercises.
You may need to consult course reading materials located at the course site as some elements
may not have been covered in the basic content contained in associated videos.

This exercise assumes you have an understanding of {dplyr} functions like select(),
filter(), mutate(), and summarize() and that you have been practicing using these
functions as part of your course allocation time outside of class. Also assumed is a basic
understanding of the {ggplot2}’s ggplot(), geom_point(), aes() functions and plot-layering
process.

This exercise focuses on:

• Intentional File Creation and File Management
• Data Aggregation
• Plot Layering
• Sourcing Script Files
• Plot Layering Involving Data Aggregation
• Workflow and Reproducibility
• Version control

This exercise uses:

• Your RStudio Git version-control project for your team project (presumably completed)
• {here}, {dplyr}, {ggplot2} functions and functions from relevant Base R libraries (e.g.,

read.csv(), readRDS(), saveRDS(), etc.)
• Your knowledge from past in-class exercises, videos, homework, etc.

Note: If your RStudio project for your team is not created, you will work in your
dataviz-exercises project and use a different data set, for example ggplot2::mpg or
ggplot2::diamonds.

1

https://gabrielcook.xyz/dataviz24/syllabus/syllabus.html

Part 1: Reading, Aggregating, and Writing Data
Select one of the ways your team has identified as potentially relevant for aggregating your
data. If you team has not yet discussed such important data issues, identify with your team
members different ways that you may need to group and aggregate your data. Consider the
metrics associated with the aggregation procedure (e.g., count/tally, mean, median, variation
measures, etc.). Your grouping variable can be numeric or character. Whatever if is, make
careful note of it.

1. Create an .R script file (Recommendation: Start with starter_script_file.R)
2. Name the file appropriately based on the goal of this part. Add either your name or

initials as a prefix to the file name. Do not use spaces.
3. Load your libraries
4. Write code to read your raw data file using {here} paths. Assign the data frame an

object name.
5. Write code to aggregate/summarize your data. Important: Be sure that your data

frame contains your grouping variable and that your summary metric is assigned the
same name as it appears in the full data set. For example, if you are summarizing
price by carat, your aggregated data frame should contain the variables price and
carat, not mean_price and carat.

6. Once you are sure that your code is correct, assign the returned data frame an object
name.

7. Write code to save your data aggregated frame object as an .Rds file using saveRDS()
and using {here} paths. To avoid ambiguity, add either your name or initials as a prefix
to the file name. Do not use spaces.

8. Save your script file

Make sure that your script and data files are saved in the appropriate project directories so
that other team members will know where they are located.

2

Part 2: Creating a Point Plot
Using your raw (non-aggregated) data, create a point plot with a numeric variable along the
y-axis and the variable that you used for grouping in Part 1 along the x-axis. You will not be
using your aggregated data for this visualization.

1. Create an .R script file (Recommendation: Start with starter_script_file.R)
2. Name the file appropriately based on the goal of this part. Add either your name or

initials as a prefix to the file name. Do not use spaces.
3. Load your libraries
4. Write code to read your raw data file using {here} paths. Assign the data frame an

object name.
5. Write code to create your point plot. Do not worry about dressing it up with any

special aesthetics.
6. Once you are sure that your code creates the intended plot, assign the returned plot to

an object name.
7. Do not worry about saving the plot object as a .png file. We will address this step

later.
8. Save your plot script file

Make sure that your script file is saved in the appropriate project directory so that other
team members will know where it is located.

3

Part 3: Creating a Multiple-Layer Point Plot

You will now create a point plot containing two layers. One layer
will utilize the data set used in Part 1 and another layer will utilize
the aggregated data set created as a component of Part 1. Both
layers will use the same x and y variables.

1. Create an .R script file (Recommendation: Start with the script created in Part 2)

2. Name the file appropriately based on the goal of this part. Add either your name or
initials as a prefix to the file name. Do not use spaces.

3. Ensure you load your libraries (they should already be loaded if you reused your script)

4. Write code to read your data and script files using {here} paths

• Write the code to read your raw (non-aggregated) data file. Assign it an object
name.

• Write the code to source() your script file created in Part 1. This create reads
your full file, aggregates the data in some way, and writes out a new data frame
as and .Rds file. This step ensures that any new aggregation of the data is based
on the original raw data file. If you read only the .Rds file without this step, you
will read a previous aggregated data file, which may not be up to date.

• Read the .Rds file created by the script above using readRDS() and assign it an
object name so that you can reference it in a plot layer. This step ensures that
your aggregated data frame is up to date.

5. Write code to create your point plot using the full data. Should already be there.

6. Write code to create your point plot layer using your aggregated data. Tip: You will
not want the previous data file inherited for this geom layer.

• Modify the code so that your point color in the second layer are not black.
• Once you are sure that your code creates the intended plot, assign the returned

plot to an object name.
• Do not worry about saving the plot object as a .png file. We will address this

step later.
• Save your plot script file

Project-Related Tip: When preparing your project report, you likely do not want to
re-aggregate data within each plot script. This approach would be computationally taxing
when dealing with large data files and multiple plots based on aggregated data. Rather, you
would want to ensure that your aggregation scripts all precede any reading of any aggregated
data files. Therefore, the step to source() the aggregation script can be commented out of
a plot script if a and only if your R Markdown file sources your aggregation scripts prior to
before reading any .Rds files.

4

Part 4: Practicing with Git
Remember that your Git commands will be in the terminal and not the RStudio console.

Checkout your Feature Branch
If you are not working on a feature branch of your team project, get on it now. To verify
your branch, use git branch in your terminal. If you are on main, checkout your feature
branch using git checkout and then set the upstream.

1. Stage your File Change

• Stage your .R script file created in Part 1.
• Use git add <path to file>

2. Commit Changes with a Message**

• Commit that change with a clear message.
• Use git commit -m "added script for"

3. Push Changes

• Push your local repository change to the remote repository on GitHub
• Use git push or git push origin <your-branch-name> (to ensure you are not push-

ing from main)

4. Repeat 1-4 for your other files.

5. Check your Remote Branch on GitHub

• Go to your GitHub account and under code toggle to see your branch history.

5

	Part 1: Reading, Aggregating, and Writing Data
	Part 2: Creating a Point Plot
	Part 3: Creating a Multiple-Layer Point Plot
	You will now create a point plot containing two layers. One layer will utilize the data set used in Part 1 and another layer will utilize the aggregated data set created as a component of Part 1. Both layers will use the same x and y variables.

	Part 4: Practicing with Git
	Checkout your Feature Branch

