
Homework 03: Creating a Plot-Saving Function

Overview

You are now familiar with using {ggplot2} to create basic plot objects. In subsequent topics,
you will make more advanced plots but for now, you need a reusable way to save plots as
high-quality files which are easy to present on a webpage. The ggsave() function will save
plots as .png but every time you need to save a plot, you will need to specify arguments
to parameters in order to ensure uniformity across those visualization (e.g., height, width,
resolution, etc.). This approach is inefficient.
For this homework, you will automate this saving step by:

• writing a function to save plot objects; that you will
• source() within you your plotting scripts; so that you
• standardize various save settings; in order to
• reproduce all saved plots (at least those using the function), so that
• changes to the function itself will automate updates for all plots

Collaboration

I understand that many of you have not written functions for some time. If you reviewed
the R Basics and Refreshers at the course site, you know there are reminders about
functions and arguments there. Many elements, however, will be reintroduced here.
Due the nature of this task, I encourage you to collaborate with a partner. You are also able
to use an AI to help you build the function but you also have to know the difference between
parameters and arguments and you are responsible for the function working correctly. Please
don’t create the function and share it with someone because a) that’s not the assignment,
b) is an academic integrity violation, c) robs you of the learning experience, and d) will
challenge your ability to fix issues that might become part of your project or be related to
elements of knowledge assessments.

1

https://gabrielcook.xyz/dataviz25/modules_setup/R%20Basics/functions_and_scripts.html

Steps

1: Review the docs for ggsave()

ggsave() will be the base function for your function, so you will need to understand its
parameters.
Use: help("ggsave") or ?ggsave

An abbreviated version is:

ggsave(
filename,
plot = last_plot(),
device = NULL,
...

)

2: Create a .R Function Script

Starting with the starter script, create a function called save_plot_png(). Naming your
file with the same name as your function would be a good idea so can identify it easily. Save
your code file where you think function code should go.

2

3: Declare the Function and Parameters

A function needs a name, and in this case, parameters too. The function() function is used
to tell R that save_plot_png will be a special object, namely a function object. Parameter
names and default arguments will go inside the () and your code instructions will go inside
{}.
Start with:

save_plot_png <- function(
your parameters, with arguments for any defaults

...

) {

}

Ensure that your function has these required parameters (some have the same name as
ggsave():

• plot: a {ggplot2} plot object needed to be saved as .png
• file_name: the name of the output .png file (e.g., "my_plot.png")
• figs_dir: the path to where you will save your figs for your website, built using

{here}
• units: the units for the dimensions (recommend pixels, “px”)
• width: the plot width in units
• height: the plot height in units
• dpi: the resolution in dots per inch

If you do not have default argument settings (e.g., the file name), do not set an argument
to that parameter. As you can see in ggsave() filename has no default argument.
You will want your plots dimensions to look good on the medium you expect your audience to
engage. Width and height can be set to "1600" and "1100" pixels respectively but searching
online or with an AI for some advice given how you believe someone would use your website
(e.g., computer, phone, etc.) might result in some adjustments.

3

3: Adding Function Instructions

An Example Parameters alone don’t make a function. Without any instructions, your
parameters will be fairly useless. Using ggsave() as your helper function, you will need to
ensure that the arguments that you pass to your function will be used as arguments passed
to the parameters of the ggsave() function. Seeing an example might help.
An example function based on mean():

mean_replicated <- function(
some_numeric_vector
) {

mean(x = some_numeric_vector, na.rm = TRUE)
}

Explanation: mean() is a function which calculates the mean of a numeric vector and
returns a single value. x is one of the parameters of mean() and x needs an argument passed
to it, otherwise mean() won’t have what it needs to do its work. The argument you need to
pass is any numeric vector, for example, c(1, 2, 11).
mean_replicated() is a silly function built on mean(). mean_replicated() has a single
parameter, some_numeric_vector with no default argument. Because the function has
code instructions, mean(x = some_numeric_vector, ...), any vector that is passed as
an argument to the some_numeric_vector parameter of mean_replicated() becomes the
argument passed to the x parameter of the mean() function. Look back at the code flow to
see this.
To test the function, you would pass a numeric vector to some_numeric_vector, like so:

mean_replicated(some_numeric_vector = c(1, 2, 11))

Add Code Instructions As with mean() use in the above example, use the same process
to build your instructions for save_plot_png() by leveraging ggsave(). Ensure that you
include all of the required parameters and that you use a second set of eyes to ensure the
arguments are passing correctly.

4

4: Test Your Function

Define your function by executing the code so that you can use it. Using some data and a
ggplot, verify that your plot object will be saved as a .png and in the correct directory and
with the name you decide.
Tip: When you build your path, you can combine figs_dir and file_name in order to
build the full path.

5: Load Libraries and Document your Script

Once you are do with your function, ensure that and libraries needed are loaded and ensure
you document your script so that the elements are clear. If you work on the script with a
peer, authorship includes contributors.
Upload your .R script to: https://ln5.sync.com/dl/a038628f0/wwfifjxk-f7rfshin-
rkedi3y8-77f9zaii

5

https://ln5.sync.com/dl/a038628f0/wwfifjxk-f7rfshin-rkedi3y8-77f9zaii
https://ln5.sync.com/dl/a038628f0/wwfifjxk-f7rfshin-rkedi3y8-77f9zaii

	Overview
	Collaboration
	Steps
	1: Review the docs for ggsave()
	2: Create a .R Function Script
	3: Declare the Function and Parameters
	3: Adding Function Instructions
	4: Test Your Function
	5: Load Libraries and Document your Script

